Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering : Solar Energy Generation and Energy Storage

Identifieur interne : 000590 ( Main/Repository ); précédent : 000589; suivant : 000591

Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering : Solar Energy Generation and Energy Storage

Auteurs : RBID : Pascal:13-0270083

Descripteurs français

English descriptors

Abstract

This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In2O3 phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I222/I400 and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0270083

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering : Solar Energy Generation and Energy Storage</title>
<author>
<name sortKey="Gulen, M" uniqKey="Gulen M">M. Gulen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yildirim, G" uniqKey="Yildirim G">G. Yildirim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bal, S" uniqKey="Bal S">S. Bal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varilci, A" uniqKey="Varilci A">A. Varilci</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belenli, I" uniqKey="Belenli I">I. Belenli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oz, M" uniqKey="Oz M">M. Oz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Turquie</country>
<wicri:noRegion>14280 Bolu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0270083</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0270083 INIST</idno>
<idno type="RBID">Pascal:13-0270083</idno>
<idno type="wicri:Area/Main/Corpus">000930</idno>
<idno type="wicri:Area/Main/Repository">000590</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing temperature</term>
<term>Argon</term>
<term>Atomic force microscopy</term>
<term>Calcining</term>
<term>Cathodic sputtering</term>
<term>Ceramic materials</term>
<term>Cubic lattices</term>
<term>Direct current</term>
<term>Doped materials</term>
<term>Electrooptical properties</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Microelectronic fabrication</term>
<term>Microstructure</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Photocatalysis</term>
<term>Polycrystal</term>
<term>Porous material</term>
<term>Reactive sputtering</term>
<term>Room temperature</term>
<term>Soda-lime glasses</term>
<term>Sputter deposition</term>
<term>Surface morphology</term>
<term>Surface structure</term>
<term>Tin addition</term>
<term>Tin oxide</term>
<term>Ultraviolet radiation</term>
<term>Visible spectrometers</term>
<term>Wide band gap semiconductors</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Température recuit</term>
<term>Microstructure</term>
<term>Propriété électrooptique</term>
<term>Addition étain</term>
<term>Dépôt pulvérisation</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Couche ITO</term>
<term>Courant continu</term>
<term>Pulvérisation cathodique</term>
<term>Pulvérisation réactive</term>
<term>Température ambiante</term>
<term>Calcination</term>
<term>Diffraction RX</term>
<term>Spectromètre visible</term>
<term>Rayonnement UV</term>
<term>Microscopie force atomique</term>
<term>Morphologie surface</term>
<term>Structure surface</term>
<term>Photocatalyse</term>
<term>Polycristal</term>
<term>Oxyde d'indium</term>
<term>Verre sodocalcique</term>
<term>Céramique</term>
<term>Oxyde d'étain</term>
<term>Argon</term>
<term>Réseau cubique</term>
<term>Matériau poreux</term>
<term>Semiconducteur bande interdite large</term>
<term>Matériau dopé</term>
<term>Fabrication microélectronique</term>
<term>6865</term>
<term>7820J</term>
<term>7867</term>
<term>6837P</term>
<term>ITO</term>
<term>In2O3</term>
<term>SnO2</term>
<term>8245J</term>
<term>6146</term>
<term>8105R</term>
<term>8540H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Céramique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In
<sub>2</sub>
O
<sub>3</sub>
:SnO
<sub>2</sub>
, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In
<sub>2</sub>
O
<sub>3</sub>
phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I
<sub>222</sub>
/I
<sub>400</sub>
and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering : Solar Energy Generation and Energy Storage</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GULEN (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YILDIRIM (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BAL (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VARILCI (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BELENLI (I.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>OZ (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, Abant Izzet Baysal University</s1>
<s2>14280 Bolu</s2>
<s3>TUR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>467-474</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000503651630070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>83 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0270083</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In
<sub>2</sub>
O
<sub>3</sub>
:SnO
<sub>2</sub>
, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In
<sub>2</sub>
O
<sub>3</sub>
phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I
<sub>222</sub>
/I
<sub>400</sub>
and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété électrooptique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electrooptical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad electroóptica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Courant continu</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Direct current</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Corriente contínua</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cathodic sputtering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pulverización catódica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Pulvérisation réactive</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Reactive sputtering</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Pulverización reactiva</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Calcination</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Calcining</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Calcinación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Spectromètre visible</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Visible spectrometers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Céramique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Ceramic materials</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Cerámica</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Argon</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Argon</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Argón</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Matériau poreux</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Porous material</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Material poroso</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>47</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>7820J</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>8245J</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="41" i2="X" l="FRE">
<s0>8105R</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="42" i2="X" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fN21>
<s1>259</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000590 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000590 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0270083
   |texte=   Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering : Solar Energy Generation and Energy Storage
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024